

US012227262B2

(12) United States Patent

Choltco-Devlin

(10) Patent No.: US 12,227,262 B2

(45) **Date of Patent:** Feb. 18, 2025

(54) MID-SPROCKET ASSEMBLY

(71) Applicant: Fox Factory, Inc., Duluth, GA (US)

(72) Inventor: Evan Michael Choltco-Devlin, North

Vancouver (CA)

(73) Assignee: Fox Factory, Inc., Duluth, GA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 718 days.

(21) Appl. No.: 16/706,042

(22) Filed: **Dec. 6, 2019**

(65) Prior Publication Data

US 2020/0172198 A1 Jun. 4, 2020

Related U.S. Application Data

(60) Provisional application No. 62/776,983, filed on Dec. 7, 2018.

(51)	Int. Cl.	
	B62M 11/06	(2006.01)
	B62M 1/36	(2013.01)
	B62M 9/00	(2006.01)
	B62M 9/06	(2006.01)
	B62M 6/40	(2010.01)

(52)

(58) Field of Classification Search

CPC B62M 11/06; B62M 9/06; B62M 1/36; B62M 6/40; B62M 2009/005; B62M 2009/007

See application file for complete search history.

(56) References Cited

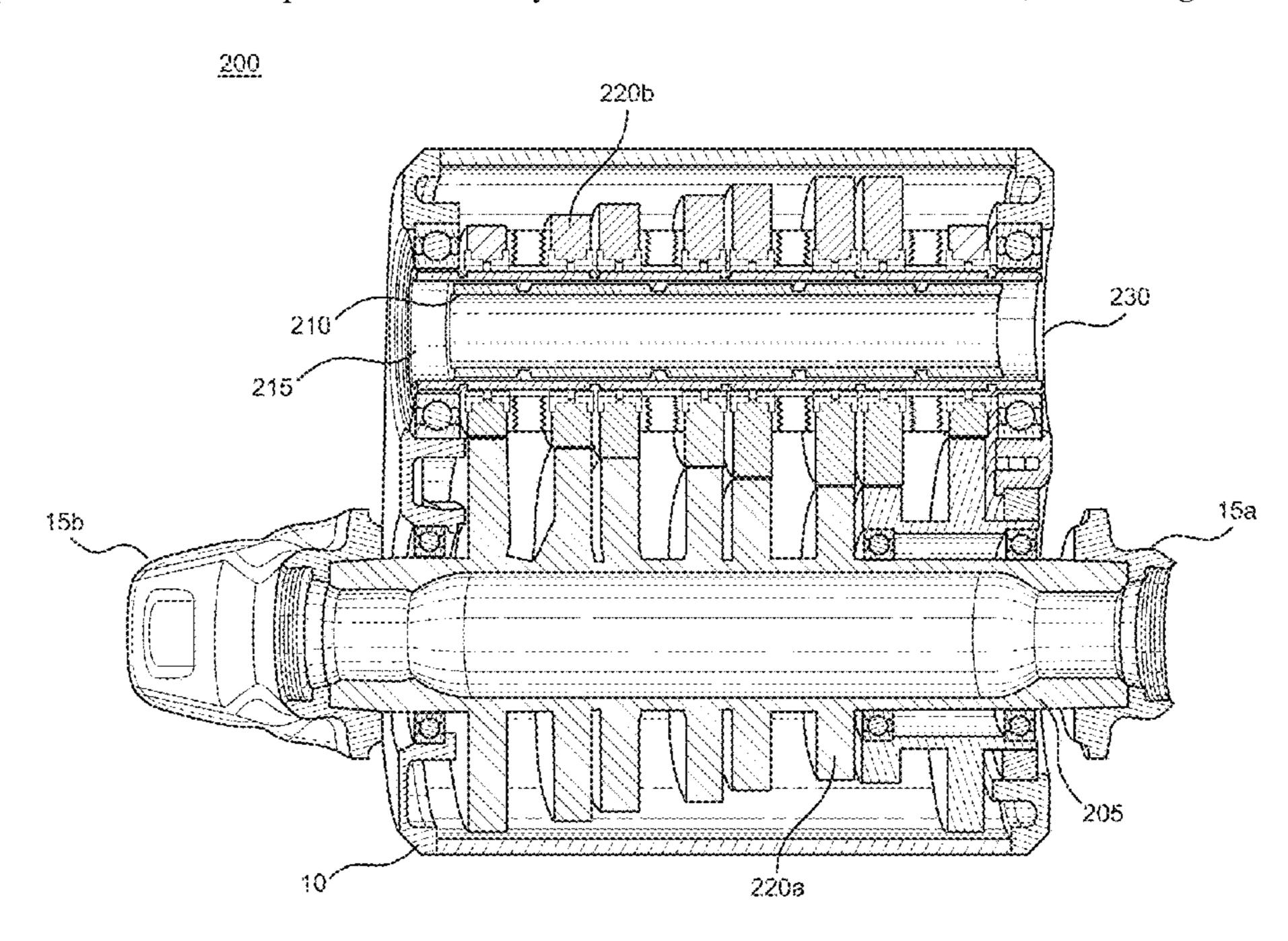
U.S. PATENT DOCUMENTS

2,451,690	Α		10/1948	Oehler	
2,468,011	A	*	4/1949	Fisette A63G 1/1	2
				472/2	.4
2,793,571	A		5/1957	Way et al.	
3,168,836	A		2/1965	Militana	
3,200,665	A		8/1965	Martin	
3,272,027	A		9/1966	Wayman	
3,304,796	A		2/1967	Leege	
3,371,549	A		3/1968	Ernst	
			(Cont	tinued)	

FOREIGN PATENT DOCUMENTS

CA	2964058 A1	10/2017
CN	1830722 A	9/2006
	(Cont	inued)

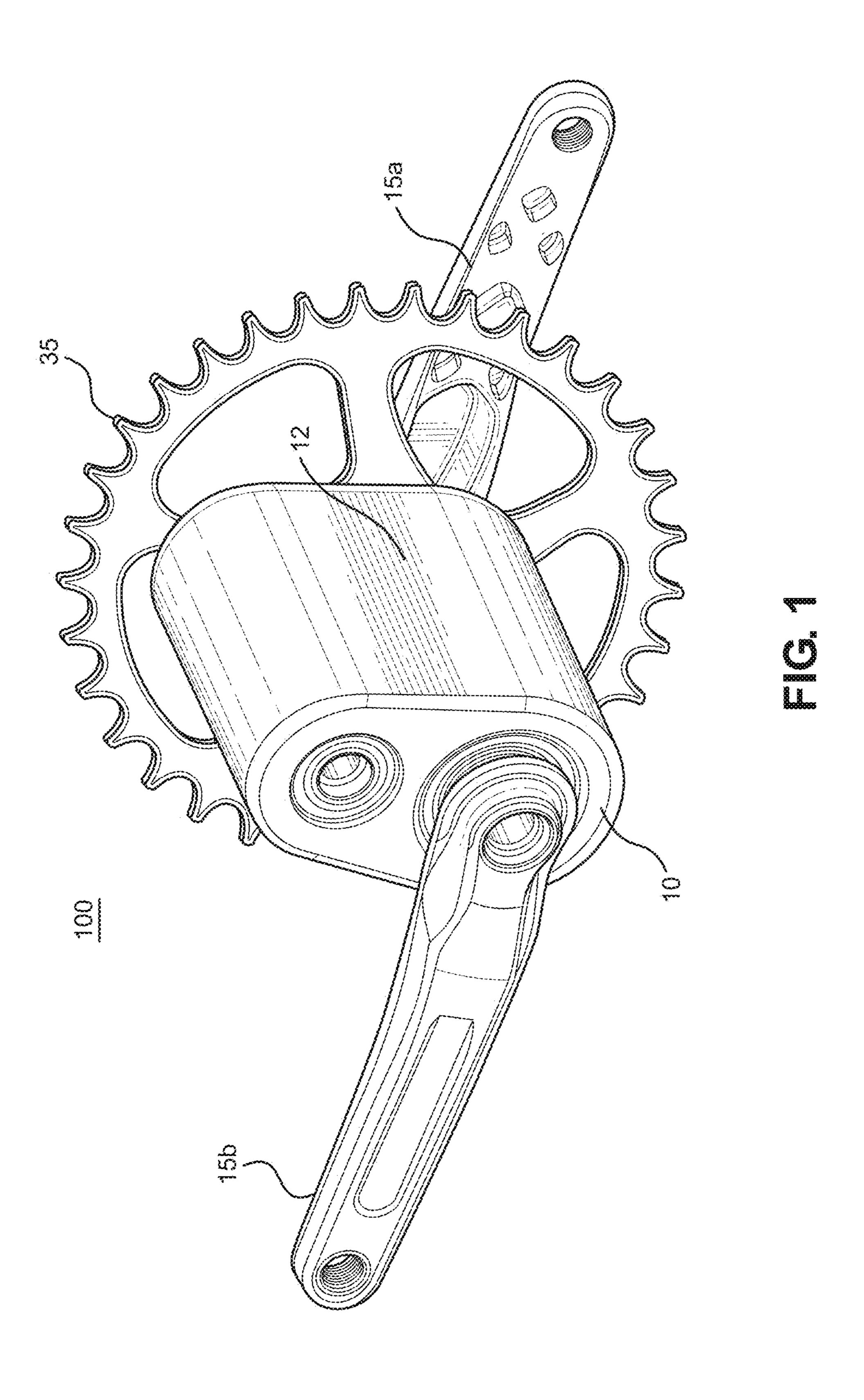
OTHER PUBLICATIONS

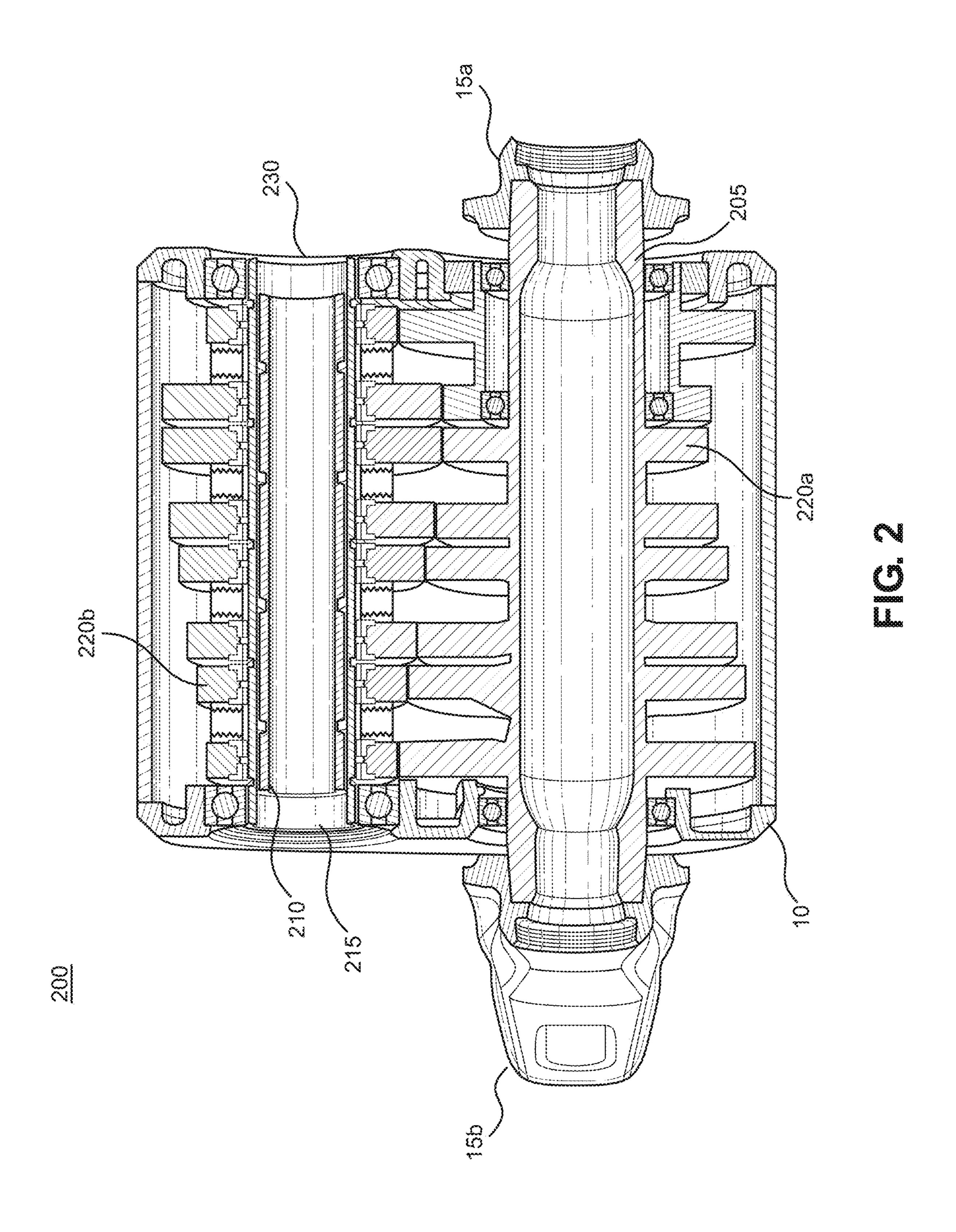

Proximate definition, Dictionary.com, Sep. 28, 2022 (Year: 2022). (Continued)

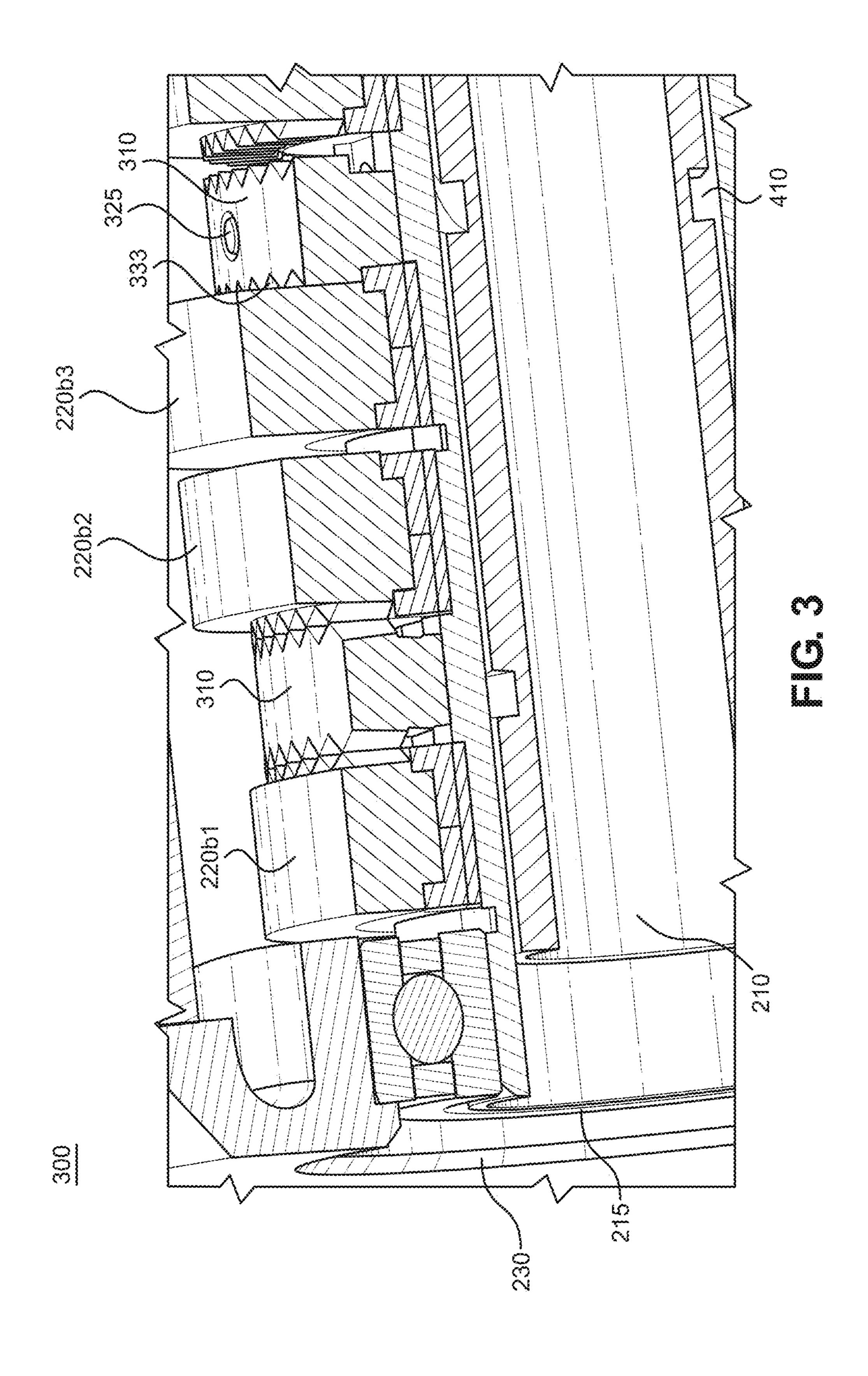
Primary Examiner — Anne Marie M Boehler

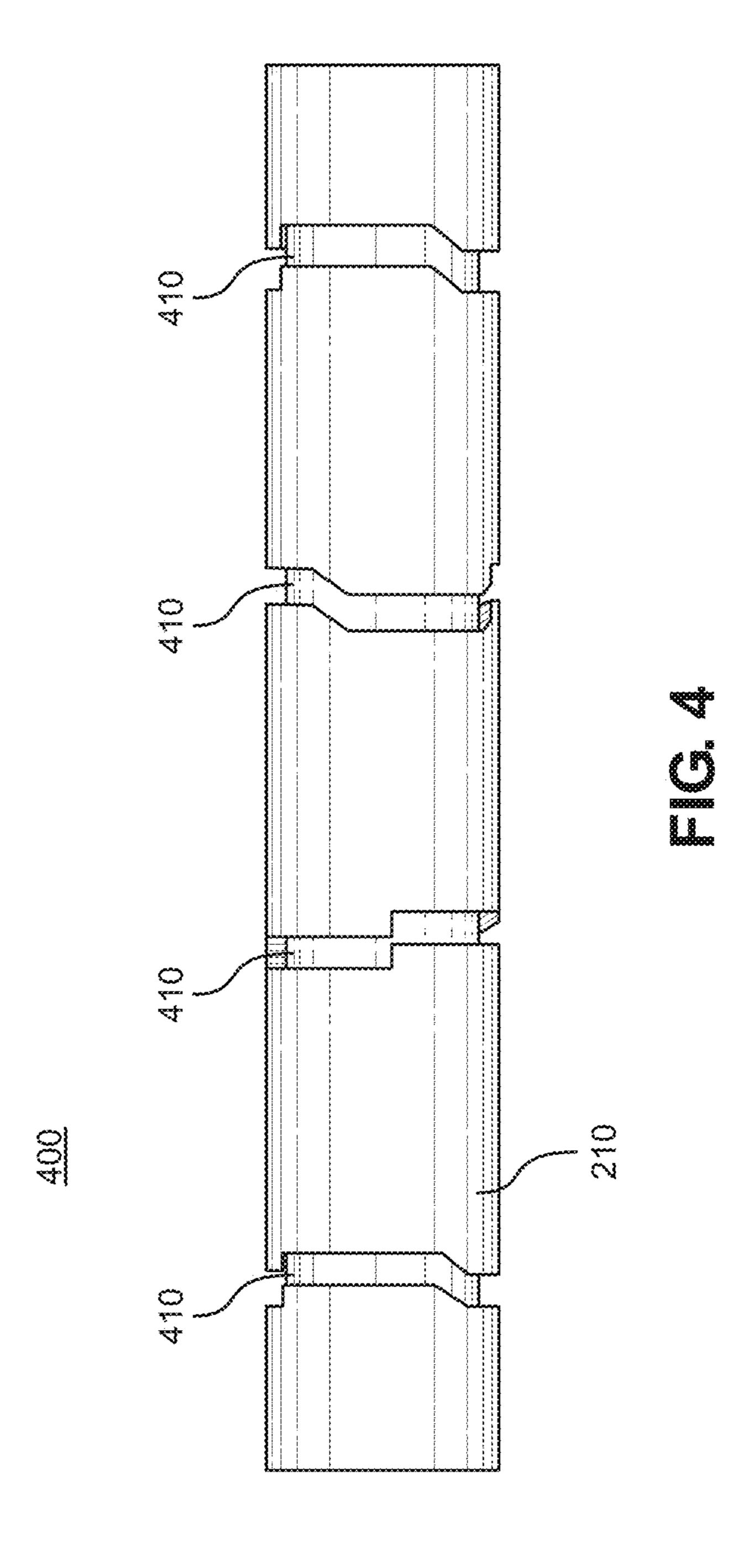
(57) ABSTRACT

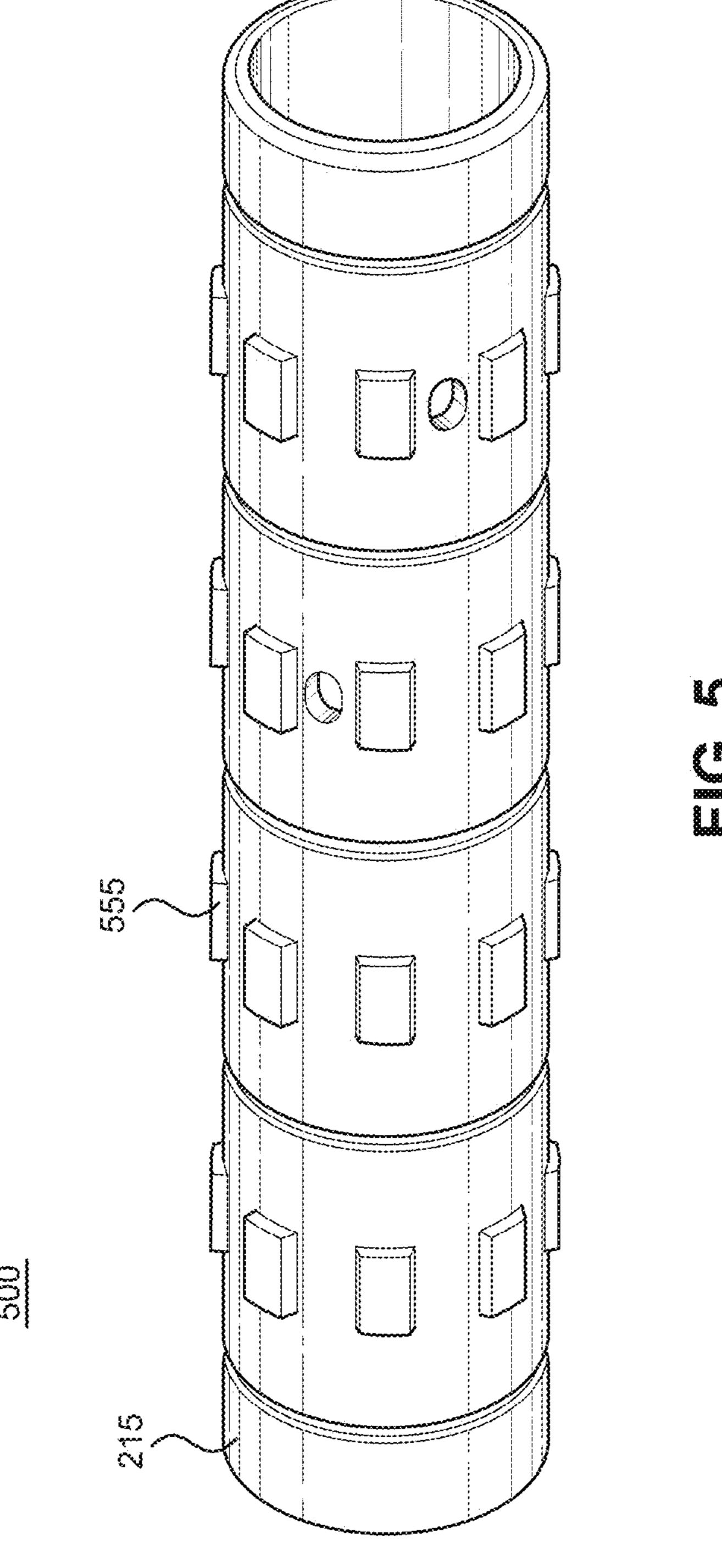
A mid-sprocket assembly is disclosed herein. The mid-sprocket assembly includes an input shaft to receive an input force, the input shaft having a plurality of input shaft gears coupled therewith. A countershaft having a plurality of countershaft gears coupled therewith, at least one of the plurality of countershaft gears selectively and axially engaged to receive the input force from at least one input shaft gears and provide the input force to a rear wheel to drive the rear wheel.

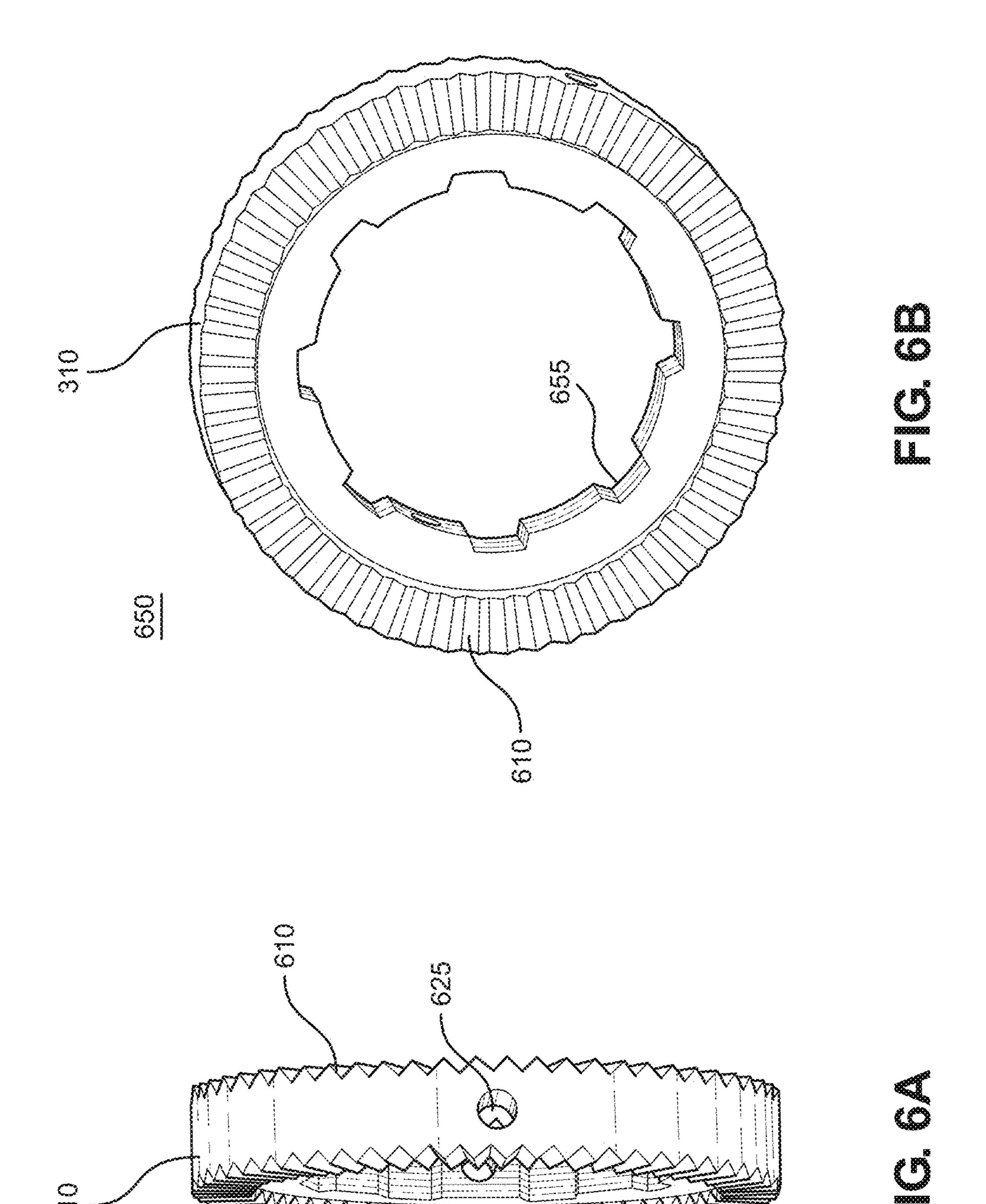

14 Claims, 6 Drawing Sheets




US 12,227,262 B2 Page 2


(56)		Referen	ces Cited	8,226,511		7/2012	
	U.S.	PATENT	DOCUMENTS	8,298,104 8,479,610		10/2012 7/2013	Valle et al.
				8,550,944		10/2013	-
3	,815,439 A	6/1974	Tarutani	8,573,093			Valle et al.
	,903,754 A			8,616,084			Meggiolan Staples et al.
	,905,248 A ,987,539 A		Peyrard Gravener	8,882,619		11/2014	-
	,987,339 A ,144,773 A		Addicks	8,888,631		11/2014	
	, ,		Martin et al.	9,016,169			Sugimoto et al.
	,240,303 A		•	9,033,835			Blank et al.
	, ,		Watanabe et al.	9,302,733			Schlanger Iwai et al.
	E30,758 E ,318,310 A	10/1981	Lang Segawa	9,308,967		4/2016	
	,311,043 A		Shimano	9,328,814			Wesling et al.
	,358,967 A	11/1982		9,415,835			Tokuyama et al.
	,392,841 A	7/1983		9,440,706			Iwai et al.
	,439,172 A		Segawa	9,463,844 9,493,211			Fukunaga Reiter et al.
	,446,753 A ,453,924 A		Nagano Sugino	9,540,070			Watarai et al.
	,475,894 A	10/1984	•	9,580,144			Bernardele
4	,545,691 A	10/1985	Kastan et al.	9,631,714			Watarai et al.
	,583,422 A	4/1986	_	9,677,658 9,719,590			Wickliffe Reiter et al.
	,586,914 A ,594,910 A		Nagano	9,725,133			Staples et al.
	,594,910 A ,598,608 A	7/1986	Nagano Ueno	9,791,033			Wickliffe et al.
	,608,878 A		Shimano	9,869,382			Wesling et al.
	,722,722 A		Rampe	9,914,502		3/2018	
	,867,733 A		Yamanoi et al.	9,919,763 9,926,038			Iwai et al. Fukunaga et al.
	,889,521 A ,003,840 A		Nagano Hinschlager	9,932,090			Yoshida et al.
	,003,840 A ,192,248 A		Nagano	9,944,351			Braun et al.
	,192,249 A		Nagano	9,963,196			Sugimoto
	,224,903 A		Langhof et al.	9,994,285			Tokuyama et al.
	,226,469 A		Matsumura et al.	10,040,510 10,053,186			Sugimoto et al. Braedt et al.
	,246,402 A ,285,701 A		Romano Parachinni	10,059,400			Tokuyama et al.
	,362,278 A		Bergles et al.	10,155,566			Sugimoto
	,413,534 A		Nagano	10,221,887			Dubois et al.
	,451,198 A		Lancaster	10,358,186			Sugimoto Akanishi
	,738,603 A		Schmidt et al.	10,359,106 10,359,107		7/2019	
	,830,096 A ,852,954 A		Schmidt et al. Yamanaka	10,377,445			Hirose et al.
	,908,364 A		Tanaka	10,407,127			Sugimoto
5	,935,033 A	8/1999	Tseng et al.	10,443,685		10/2019	
	,947,852 A		Moretz	10,507,888			Sugimoto Akanishi
	,984,817 A ,007,442 A	11/1999	Schulz Schmidt	10,562,589			Sugimoto et al.
	,007,442 A ,013,001 A		Miyoshi	10,578,201			Reiter et al.
	,022,284 A		Bartolozzi et al.	10,800,482			Staples et al.
	,102,821 A		Nakamura	10,864,963			Staples et al.
	,202,506 B1		Storck et al.	10,994,804 11,014,628			Sugimoto Choltco-Devlin et al.
	,203,462 B1 ,564,675 B1		Takamori Iiano	11,130,546			Staples et al.
	,572,500 B2		Tetsuka	11,505,277			Yamanaka
6	,656,072 B2	12/2003	Sugita et al.	2002/0086753		7/2002 5/2003	
	<i>'</i>	12/2003	_	2003/0097900 2003/0199351		10/2003	Yamanaka Nichols
	,755,095 B2 ,860,171 B1		Yamanaka Nanko et al.	2004/0070166		4/2004	
	,080,574 B2	7/2006		2004/0092352	A 1	5/2004	Chiang
	,263,914 B2		Ording et al.	2004/0200314			Hermansen et al.
	,267,030 B2		French	2004/0204274 2005/0009656		1/2004	Young Preis et al.
			Thompson Nonoshita et al.	2005/0009030		1/2005	
	,505,804 B2 ,530,290 B2	5/2009		2005/0032596			Nonoshita et al.
			Guiseppe et al.	2005/0039570			Nanko et al.
	,686,721 B2			2005/0072264			Yamanaka
	,699,733 B2			2005/0081678 2005/0090349		4/2005 4/2005	
	,713,156 B2 ,753,815 B2		Sakura et al. Saifuddin et al.	2005/0090949			Feltrin et al.
	/		Nonoshita et al.	2005/0233850		10/2005	
	<i>'</i>		Nonoshita	2005/0282671			Emura et al.
	,883,437 B2			2005/0282672			Nonoshita
	,942,771 B2			2006/0205549			Nonoshita et al.
	,967,709 B2 ,025,304 B2	6/2011 9/2011	Emura et al.	2006/0210734 2006/0288819		9/2006 12/2006	Dal et al.
	,023,304 B2 ,057,338 B2			2000/0288819		2/2007	
	/	12/2011		2007/0049437			Wickliffe
			Oishi et al.	2007/0054768		3/2007	Miyazawa


(56)		Referen	ces Cited		0085899 A1 0152558 A1		Bernardele Staples et al
	U.S.	PATENT	DOCUMENTS	2019/0	0185108 A1 0210677 A1	6/2019	Staples et al. Bush et al. O'Reilly
2007/0111833	A 1	5/2007	Young		0200253 A1		Klawer et al.
2007/0111033			Nonoshita et al.	2020/0	0256446 A1	8/2020	Klawer et al.
2007/0137425	A1	6/2007	Dal et al.		0094652 A1		Staples et al.
2007/0173364			Renshaw	2023/0	0111794 A1	4/2023	Lee et al.
2007/0186718			Chiang		EODEIC	NI DATE	NIT DOCI INTENITO
2007/0199403 2007/0227293		8/2007 10/2007	Ciavatta et al.		FOREIG	N PAIE	NT DOCUMENTS
2007/0227293		10/2007		CN	200000	9089 Y	1/2008
2007/0265122		11/2007	Emura et al.	CN		1782 A	7/2008
2007/0270261			Sakura et al.	CN		3637 A	6/2013
2007/0283781			Meggiolan	CN	107380)340 A	11/2017
2008/0028887			Valle et al.	DE)258 A1	6/1982
2008/0120845		5/2008		DE		1030 A1	3/1987
2008/0176691 2008/0202284			Saifuddin et al. Valle et al.	DE DE		1879 A1 1432 A1	5/1999 5/2001
2008/0202264			Bouchez	DE DE		3755 U1	5/2001 2/2003
2008/0272572		11/2008		DE	102015005		11/2015
2008/0314193	A1	12/2008	Meggiolan	DE	202017107		3/2018
2009/0042681			Dal et al.	\mathbf{EP}	0144	1984 B1	4/1989
2009/0042682			Dal et al.	EP		3780 A1	4/1993
2009/0105024			Sakura et al.	EP)393 A1	1/2003
2009/0236777 2009/0243160		10/2009	Chiang	EP		1609 A2	2/2003
2009/0243100			Sakura et al.	EP EP		2825 A1 5282 A2	10/2003 6/2004
2010/0064845			French	EP		3654 A1	1/2005
2010/0093494		4/2010	Smith	EP		9417 A2	1/2006
2010/0326233	A1	12/2010	Schlanger	EP		1460 A2	2/2008
2011/0126666			Meainsh	EP		1461 A2	2/2008
2011/0167943	Al*	7/2011		EP		3091 A1	2/2012
2011/0251000	A 1 sk	10/2011	74/331	ES)778 A1	2/2017
2011/0251008	A1*	10/2011	Schmitz B62M 11/06	FR		1975 A	11/1945
2011/0319209	A 1	12/2011	475/149	FR FR		5276 A 1615 B1	5/1949 4/1986
2011/0319209	_		Huang et al. Schroedl B62M 9/02	GB		5363 B	6/1982
2012,0172105	111	7,2012	29/893.1	$\overline{ m JP}$		1662 A	7/1998
2013/0011215	A1	1/2013		JP	2005053	3410 A	3/2005
2013/0087013	A1	4/2013	Sugimoto et al.	TW		1216 A	5/2008
2013/0139642			Reiter et al.	TW		0021 A	8/2015
2013/0184110		7/2013		WO		7909 A1	12/2007
2014/0335987			Iwai et al.	WO	2010130	5135 A1	12/2010
2015/0082939 2015/0152231			Meyer et al. Ohki et al.			TED DI	
2015/0132231			Malloy		OTI	HER PU	BLICATIONS
2015/0176692		6/2015		Chinasa	Second Action	and Soara	ch Report, App No. 2020011439469.
2015/0198231		7/2015	Emura		ages, Dated Ma		
2015/0210352			Sugimoto	·	•	•	a. Report, App No. 2020011439469.
2015/0210353			Tokuyama et al.		ges, Dated Aug		
2015/0211623 2015/0217834		7/2015	Inui Iwai et al.		~ ~	•	Report, App No. 201710232829.8,
2015/0217854			Sugimoto		es, Dated Feb. 3		1
2015/0360749			Iwai et al.	Europea	an Examination	n Report,	European Patent Application No.
2015/0362057	A1	12/2015	Wesling et al.		23.4, 10 Pages,		·
2016/0114859			Tsai et al.	_			of Rejection for TW Appl. No.
2016/0272279			Yoshida et al.		061, Feb. 26, 2	`	
2017/0029066			Fukunaga et al.	~		5	for TW Appl. No. 106112061, Jul.
2017/0146109 2017/0174288		6/2017	Reiter et al.	,	8 (Year: 2018).		1 0 4 4 2010 (77 2010)
2017/0174266			Braedt		-	_	rch, Oct. 4, 2019, (Year: 2019).
2017/0234418			Barefoot et al.				e First Action and Search Report,
2017/0247081	A1	8/2017	Sugimoto	1.1		,	o. 3, 2020 (Year: 2020).
2017/0274960			Dubois et al.	_	-	_	nn Patent Application No. 17166123.
2017/0292598			Moore et al.	•	5, 2017, 9 Page n of Rejection		Application No. 106112061 pp. 8,
2018/0037296			Hamamoto	Feb. 26	ū	101 1 44 7	ъррпеанон 110. 100112001 pp. 0,
2018/0043203		2/2018			,	for TW 4	Application No. 106112061 pp. 10,
2018/0057106 2018/0079467			Iwai et al. Hirose et al.	Jul. 30,		AVA I TT C	ppiiomion roomzoon pp. ro,
2018/00/9467			Sugimoto	,		and Searc	h Report, App No. 2020011439469.
2018/012/03/			Emura		ages, Dated Fel		- ·
2018/0134340			Milanesio et al.	,	~	,	s of Plastic Articles", Sep. 30, 1993,
2018/0347680			Akanishi	p. 175.	r		, 1 , ,
2018/0362113		12/2018		-			
2019/0017586	A1	1/2019	Sugimoto	* cited	by examiner	•	



MID-SPROCKET ASSEMBLY

CROSS-REFERENCE TO RELATED APPLICATIONS (PROVISIONAL)

This application claims priority to and benefit of copending U.S. Provisional Patent Application No. 62/773,983 filed on Dec. 7, 2018, entitled "MID-SPROCKET ASSEMBLY" by Evan Michael Choltco-Devlin, and assigned to the assignee of the present application, the disclosure of which is hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

Embodiments of the invention generally relate to a midsprocket assembly for a bicycle.

BACKGROUND

In a bicycle, such as a mountain bike (or the like) that has a number of gears in a cassette in the rear and a chainring in the middle, there can be a significant amount of vibration, suspension flex, cross-chaining, and other detrimental actions that can cause roller chain disengagement. For example, as the roller chain moves to the peripheral gears on the rear cassette, there is an increase in the lateral angle at which the roller chain approaches the chainring. These different approach angles can deleteriously affect the ability of the traditional chainring to retain the roller chain thereby resulting in roller chain disengagement.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the present invention are illustrated by way of example, and not by way of limitation, in the accompanying 35 drawings, wherein:

FIG. 1 is an orthogonal view of a mid-sprocket assembly, in accordance with an embodiment.

FIG. 2 is a sectional view of the mid-sprocket assembly, in accordance with an embodiment.

FIG. 3 is a sectional view of the gear engagement/disengagement of the mid-sprocket assembly, in accordance with an embodiment.

FIG. 4 is a side view of the shifting shaft including the camming slot features, in accordance with an embodiment. 45

FIG. 5 is an orthogonal view of the countershaft that includes the teeth for engaging with the interior splines of a shift ring, in accordance with an embodiment.

FIG. **6**A is an orthogonal view of a shift ring with pawls and a cam pin hole, in accordance with an embodiment.

FIG. **6**B is a side view of the shift ring with side teeth/pawls for engagement with the gear ring and inner circumference splines for engagement with the countershaft, in accordance with an embodiment.

The drawings referred to in this description should be 55 understood as not being drawn to scale except if specifically noted.

DESCRIPTION OF EMBODIMENTS

The detailed description set forth below in connection with the appended drawings is intended as a description of various embodiments of the present invention and is not intended to represent the only embodiments in which the present invention is to be practiced. Each embodiment 65 described in this disclosure is provided merely as an example or illustration of the present invention, and should

2

not necessarily be construed as preferred or advantageous over other embodiments. In some instances, well known methods, procedures, and objects have not been described in detail as not to unnecessarily obscure aspects of the present disclosure.

The disclosed mid-sprocket assembly also increases chain retention capabilities by removing the alignment relationship between the sprocket and the rear drive gear as the different gears are no longer on the rear cassette, but are instead part of the mid-sprocket assembly.

Referring now to FIG. 1, an orthogonal view 100 of a mid-sprocket assembly 10 is shown in accordance with an embodiment. Mid-sprocket assembly 10 is shown in conjunction with a left-hand non-drive crank arm 15b, a right-hand drive side crank arm 15a, and a chainring 35. In general, mid-sprocket assembly 10 is mounted into some number of modular interfaces in a bicycle frame and does both the power transmission and the gear shifting actions that is normally split up into a crankset at the front end and a derailleur at the rear wheel including a derailleur cassette cog cluster and chain.

Although a chainring 35 is shown, it is merely one of a plurality of ways for the mid sprocket assembly 10 to provide drive to the rear wheel. In one embodiment, instead of a chainring, there could be a belt cog, a chain cog, or the like to provide final drive to the rear wheel. Mid-sprocket assembly 10 also includes a shifting mechanism 12 at the center panel of the mid-sprocket assembly 10 that allows the shifting from a shifter (or shifters) at the handlebars (or other location) that is manipulated by the rider to shift the internal gears within the mid-sprocket assembly 10.

With reference now to FIG. 2, a sectional view 200 of the mid-sprocket assembly 10 is shown in accordance with an embodiment. In one embodiment, mid-sprocket assembly 10 includes an input shaft 205 (connected to the crank arms 15a) and 15b) with one or more gears 220a directly attached to it and a countershaft 215 and a shifting shaft 210 that is selectively choosing which gear 220b is engaged to the countershaft 215. In one embodiment, in the case of spur gear driven assemblies there is a need for a third shaft **230** (the top shaft) to reverse the direction back to the appropriate direction. E.g., if the bike is being pedaled forward, the countershaft 215 is rotating backwards, and the third shaft 230 is needed to translate that power back into the forward direction. In one embodiment, the third shaft 230 is concentric about the countershaft 215. In another embodiment, the third shaft 230 is concentric about the input shaft 205. Although gears are shown, it should be appreciated that the power transmission could be performed with belts, chains, 50 spur gears, etc. and any number of shafts could be utilized.

In one embodiment, power is input through the input shaft 205 (via the crank arms 15a and 15b, a motor, etc.), translated through all of the gears 220a and 220b to the countershaft 215, where one of the gears 220b on the countershaft 215 is selectively engaged to transfer the power into the countershaft 215 and then back out of the countershaft 215 into the output shaft (e.g., third shaft 230) which will have an output gear selected for use to provide the drive to the rear wheel. In another embodiment, the mid-sprocket assembly 10 does not include an output shaft and instead the power is transferred to the rear wheel directly from the countershaft 215. For example, In the case of an internal belt or chain drive where the drive is not reversed, it could be advantageous to have the output be direct from the countershaft 215 to differently direct chain forces on a bike to tune anti-squat characteristics and to simplify the internals of the mid-sprocket assembly 10.

Referring now to FIG. 3, a sectional view 300 of the gear engagement/disengagement of the mid-sprocket assembly is shown in accordance with an embodiment.

Present gearbox assemblies use radially acting pawls with a radial interface, that are selectively engaged. However, because of the radial space restrictions of a gearbox, the pawls are housed centrally inside the countershaft. In this configuration, the gearbox does not shift well under load. Instead, some amount of decrease in the amount of input torque is needed to move the gear out of the gear that it is currently in and into the new chosen gear. Normally, all of the gears are always engaged, and the gear selection refers to which of the gears will be linked to the countershaft so that the power can be transferred to the countershaft and then 15 gear ring and the engagement of a second gear ring. In out through the output shaft. In many cases, they are done with radial pawls which don't like moving when they are under load.

However, in the mid-sprocket assembly 10, a mechanism is used where each of pawls have spaces or shift rings 310 20 such as in FIG. 3 where gear 220b3 (and not gears 220b1 or **220***b***2**) is engaged. In one embodiment, each of the shift rings 310 have pawl space angles and spaces that can vary. Moreover, the pawl geometry on the shift rings 310 has a design such that under-load they always want to disengage. ²⁵ Thus, the natural state of the shift rings 310 would be a neutral or disengaged state. The shifting shaft 210 inside the countershaft 215 utilizes a cam feature (as shown by the cam pin 325) that interfaces with a camming slots 410 feature in the shift shaft 210 which holds the shift rings 310 in place.

Referring now to FIG. 4, a side view 400 of the shifting shaft 210 including the camming slots 410 is shown in accordance with an embodiment. In general, camming slots 410 on shifting shaft 210 are offset accordingly to engage the appropriate (or different) shift rings 310 based upon the orientation of shifting shaft 210.

In the prior art, a pawl is locked in under load such that an attempt to change the gearing under load is difficult, if not impossible, and is likely to damage the pawl, wear out the $_{40}$ gears, etc. In other words, the prior art pawls have a desire to remain engaged. While the embodiments disclosed herein have a natural resting state that is neutral or disengaged.

In one embodiment, (as shown in FIG. 2) shifting shaft 210 is retained from shifting right or left axially with a 45 retaining feature (angular contact ring, or thrust bearing) on either end of the shifting shaft 210 that could be a bearing or the like that will hold the shifting shaft 210 with an amount of force that can also allow shifting shaft 210 to move axially based on the camming slots 410.

With reference now to FIG. 5, an orthogonal view 500 of countershaft 215 that includes the teeth 555 for engaging with the interior splines 655 of a shift ring 310 is shown in accordance with an embodiment. In one embodiment, the protrusions from the counter shaft only move axially in 55 relation to the shift ring 310. Further, the mating faces on each of the shift ring could be referred to herein as either "splines" or "pawls." In one embodiment, the bushing on the gear rings are slotted so that they can pass over the splines **655** during assembly and then spin freely around the shifting 60 shaft 210 once in the correct places axially.

Referring now to FIG. 6A, an orthogonal view 600 of a shift ring 310 with side pawls 610 for engaging with gears 220b and a cam pin hole 625 for engagement with cam pin 325 is shown in accordance with an embodiment. With 65 reference now to FIG. 6B, a side view 650 of the shift ring 310 with side pawls 610 (or teeth) for engagement with

gears 220b and inner circumference splines 655 for engagement with teeth 555 of countershaft 215 is shown in accordance with an embodiment.

In one embodiment, unlike a radial pawl gear ring that may have 10-24 pawls, the present axial embodiment has 60 pawls 610 on the shift rings 310. In one embodiment, there may be a similar number and shape of the pawls on the gears **220***b*. Thus, the amount of play during a shift when there is a disengagement of a first gear and an engagement of another different gear is significantly reduced. For example, the number of pawls divided by 360 provides the number of degrees of free play during a gear shifting process. In a prior art 24 pawl gear ring, the amount of free play would be 15 degrees that would occur during a disengagement of a first contrast, in the present 60 pawl 610 shift ring 310 there would only be 6 degrees of free play during a gear ring change situation, e.g., a disengagement of a first gear ring and the engagement of a second gear ring.

In one embodiment, because of the additional number of pawls 610, there is also a force reduction between the pawl interfaces 333 as shown in FIG. 3. That is, the force on the shift rings 310 and gears 220b is shared across the 60 pawl **610**.

In one embodiment, because of the resting neutral aspects of each shift ring 310 and the configuration of gears 220b, the face of the pawls 610 can be sharp on both sides (e.g., a steep face angle on each side). Which allows the pawls to be much smaller in size and therefore capable of having more pawls 610 on shift rings 310 and gears 220b (as they do not need to have a shallow face on one side of the pawls **610** to deal with a free rotating need of a prior-art gear ring). Although a number of pawls 610 is shown, the number of pawls 610 could be different. Moreover, although a shape of 35 the pawls **610** faces is shown, the faces could be different to provide different friction/retaining characteristics.

In one embodiment, because the pawl faces on the shift rings and gears are symmetric, the gears 220b could be set to be loaded even when the input from the pedals is backwards which would allow the mid-sprocket assembly 10 to become a direct drive. In one embodiment, the freewheel could only be at the rear hub instead of at the mid-sprocket assembly 10 which would reduce the weight, complexity, and the like of the mid-sprocket assembly.

In one embodiment, the rear hub could be a direct drive hub and the mid-sprocket assembly 10 could include the freewheel capability to reduce the weight, size, complexity of the rear wheel of the bike.

In one embodiment, because of the symmetry of the pawls 50 **610** on the shift rings **310** and the gears **220**b, the different freewheel and direct drive configurations described above could be made by the simple swapping out different rear wheels and/or making an adjustment to the mid-sprocket assembly. In so doing, a rider could make a quick pit-stop and change a bike to any of the different configurations.

In one embodiment, the main driving torque of the system is carried by the splines in the countershaft directly. In one embodiment, shift rings 310 are transferring a force into the countershaft via the shaft pin, while the remaining gears are spinning on the spline free portion about the countershaft.

Although a number of components are shown in the above figures, it should be appreciated that the components of the mid-sprocket assembly could be fixed or could be interchangeable. For example, a given gear ring could be changed, a plurality of gear rings could be changed, similarly, the countershaft, shift ring, cam pins, and the like could also be fixed or interchangeable to allow for different

5

gearing scenarios, different gear numbers, etc. Further, one or more of the components could be adjusted, modified, removed, added, or exchanged for personal reasons, for performance reasons, for different applications (e.g., road, downhill, offroad, uphill, etc.), for different size bike frames, 5 different crank arms, different chainring designs, and the like.

The foregoing Description of Embodiments is not intended to be exhaustive or to limit the embodiments to the precise form described. Instead, example embodiments in 10 prising: this Description of Embodiments have been presented in order to enable persons of skill in the art to make and use embodiments of the described subject matter. Moreover, various embodiments have been described in various combinations. However, any two or more embodiments could be 15 combined. Although some embodiments have been described in a language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. 20 Rather, the specific features and acts described above are disclosed by way of illustration and as example forms of implementing the claims and their equivalents.

What is claimed is:

1. A mid-sprocket assembly comprising:

an input shaft to receive an input force,

the input shaft having a plurality of input shaft gears coupled therewith; and

- a countershaft having a plurality of countershaft gears 30 coupled therewith,
 - at least one of the plurality of countershaft gears selectively and axially engaged to receive the input force from at least one of the plurality of input shaft gears and provide an output force to a drive wheel of 35 a vehicle;
 - a shifting mechanism, the shifting mechanism comprising:
 - a shifting shaft within the mid-sprocket assembly, the shifting shaft coupleable with at least one of 40 the plurality of countershaft gears on the countershaft, said shifting shaft further comprising:
 - a plurality of shift rings coupled therewith, the plurality of shift rings interspersed within said plurality of countershaft gears, the plurality of 45 shift rings having varying spaces and space angles, each of the plurality of shift rings comprising:
 - a shift ring cam pin hole,
 - the shift ring cam pin hole to receive a cam pin, the cam pin to couple at least one of the plurality of shift rings with the input shaft via an input shaft cam pin hole on said input shaft; and
 - a shifter located away from said mid-sprocket assembly, the shifter communicatively coupled with the shifting shaft, a manipulation of the shifter causes the shifting shaft to select one of said at least one of said plurality of countershaft gears to engage with said at least one of the plurality of input shaft gears wherein each of said plurality of shift rings has a pawl geometry which is configured such that, when one of said plurality of shift rings is under load, said one of said plurality of shift rings will have a natural resting state of disengagement in order to facilitate shifting when under load.
- 2. The mid-sprocket assembly of claim 1, wherein the drive wheel of the vehicle is a rear wheel of the vehicle.

6

- 3. The mid-sprocket assembly of claim 1, further comprising:
 - an output shaft to receive the output force from at least one of the plurality of countershaft gears;
 - a chainring coupled with the output shaft; and
 - a chain rotatably coupled with the chainring,
 - the chain to transfer the output force from the chainring to the drive wheel of the vehicle.
- 4. The mid-sprocket assembly of claim 1, further comprising:
 - an output shaft to receive the output force from at least one of the plurality of countershaft gears;
 - a belt cog coupled with the output shaft; and
 - a belt rotatably coupled with the belt cog,
 - the belt to transfer the output force from the belt cog to the drive wheel of the vehicle.
- 5. The mid-sprocket assembly of claim 1, further comprising:
 - each of the plurality of countershaft gears having a countershaft pawl interface on one side thereof; and each of the plurality of shift rings further comprising:
 - a shift pawl interface on at least one side thereof, said shift pawl interface of at least one of said plurality of shift rings engages with said countershaft pawl interface of one countershaft gear to engage said countershaft with said input shaft.
- 6. A method of transmitting a force received from a drive component to a drive wheel of a vehicle via a mid-sprocket assembly, the method comprising:
 - receiving an input force from a drive component to at least one input shaft gear of an input shaft,
 - the input shaft having a plurality of input shaft gears coupled therewith;
 - transferring the input force from the input shaft to at least one countershaft gear of a countershaft,
 - the countershaft having a plurality of countershaft gears coupled therewith;
 - generating an output force from the countershaft, the output force generated from the input force transferred from the input shaft;
 - providing a shifting shaft within the mid-sprocket assembly; and
 - communicatively coupling a shifter with the shifting shaft, the shifter located away from said mid-sprocket assembly; and
 - manipulating the shifter causes the shifting shaft to engage with said input shaft and said countershaft;
 - providing an input shaft cam pin hole on said input shaft; providing a countershaft pawl interface on one side of each of the plurality of countershaft gears; and
 - coupling a plurality of shift rings with the shifting shaft, the plurality of shift rings interspersed within said plurality of countershaft gears, the plurality of shift rings having varying spaces and space angles,
 - each of the plurality of shift rings comprising:
 - a shift ring cam pin hole,
 - utilizing a cam pin to couple at least one of the plurality of shift rings with said input shaft;
 - each of the plurality of shift rings further comprising: a shift pawl interface on at least one side thereof; and utilizing said shift pawl interface to engage with said countershaft pawl interface thereby coupling at least one of the plurality of shift rings with at least one of said plurality of countershaft gears; and
 - providing the output force to a drive wheel of a vehicle, wherein each of said plurality of shift rings has a pawl geometry which is configured such that, when one of

15

7

said plurality of shift rings is under load, said one of said plurality of shift rings will have a natural resting state of disengagement in order to facilitate shifting when under load.

7. The method of claim 6 wherein transferring the input 5 force further comprises:

selectively and axially engaging at least one of the plurality of countershaft gears with at least one of the plurality of input shaft gears; and

transferring the input force to one of the plurality of ¹⁰ countershaft gears from one of the plurality of input shaft gears.

8. The method of claim **6**, wherein the drive wheel of the vehicle is a rear wheel of the vehicle.

9. The method of claim 6, further comprising providing the output force from the countershaft to an output shaft;

coupling a chainring with the output shaft;

providing a chain to couple the chainring with the drive wheel; and

utilizing the chain to transfer the output force from the chainring to the drive wheel of the vehicle.

10. The method of claim 6, further comprising providing the output force from the countershaft to an output shaft;

coupling a belt cog with the output shaft;

providing a belt to couple the belt cog with the drive wheel; and

utilizing the belt to transfer the output force from the belt cog to the drive wheel of the vehicle.

11. A mid-sprocket assembly comprising:

an input shaft to receive an input force,

the input shaft having a plurality of input shaft gears coupled therewith; and

a countershaft having a plurality of countershaft gears 35 prising: each coupled therewith,

at least one of the plurality of countershaft gears selectively and axially engaged to receive the input force from at least one of the plurality of input shaft gears and provide an output force;

an output shaft to receive the output force from at least one of the plurality of countershaft gears, and transfer the output force to a drive wheel of a vehicle;

a shifting shaft within the mid-sprocket assembly;

8

a shifter located away from said mid-sprocket assembly, the shifter communicatively coupled with the shifting shaft,

a manipulation of the shifter causes the shifting shaft to engage with one of said plurality of countershaft gears; wherein said shifting shaft further comprises:

a plurality of shift rings coupled therewith, the plurality of shift rings interspersed within said plurality of countershaft gears, the plurality of shift rings having varying spaces and space angles,

each of the plurality of shift rings comprising:

- a shift ring cam pin hole, the shift ring cam pin hole to receive a cam pin, the cam pin to couple at least one of the plurality of shift rings with the input shaft via an input shaft cam pin hole on said input shaft, wherein each of said plurality of shift rings has a pawl geometry which is configured such that, when one of said plurality of shift rings is under load, said one of said plurality of shift rings will have a natural resting state of disengagement in order to facilitate shifting when under load.
- 12. The mid-sprocket assembly of claim 11, further comprising:

a chainring coupled with the output shaft; and

a chain rotatably coupled with the chainring,

the chain to transfer the output force from the chainring to the drive wheel of the vehicle.

13. The mid-sprocket assembly of claim 11, further comprising:

a belt cog coupled with the output shaft; and

a belt rotatably coupled with the belt cog,

the belt to transfer the output force from the belt cog to the drive wheel of the vehicle.

14. The mid-sprocket assembly of claim 11, further comprising:

each of the plurality of countershaft gears having a countershaft pawl interface on one side thereof; and each of the plurality of shift rings further comprising:

a shift pawl interface on at least one side thereof, said shift pawl interface of at least one of said plurality of shift rings engages with said countershaft pawl interface of one countershaft gear to engage said countershaft with said input shaft.

* * * *